On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints
نویسندگان
چکیده
The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they often have a computational advantage over alternatives that have been proposed for solving the same problem and that this makes them successful in many real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of unknowns satisfying up to hundreds of thousands of constraints) and by a discussion of the demonstrated efficacy of projection methods in numerous scientific publications and commercial patents (dealing with problems that can have over a billion unknowns and a similar number of constraints). Projection methods · Convex feasibility problems · Numerical evaluation · Optimization · Linear inequalities · Sparse matrices
منابع مشابه
TR-2009016: On the Effectiveness of Projection Methods for Convex Feasibility Problems with Linear Inequality Constraints
The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of unknowns satisfying up to hundreds...
متن کاملLinear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملA finite steps algorithm for solving convex feasibility problems
This paper develops an approach for solving convex feasibility problems where the constraints are given by the intersection of two convex cones in a Hilbert space. An extension to the feasibility problem for the intersection of two convex sets is presented as well. It is shown that one can solve such problems in a finite number of steps and an explicit upper bound for the required number of ste...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملLinear programming on SS-fuzzy inequality constrained problems
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 51 شماره
صفحات -
تاریخ انتشار 2012